第十三章 無母數統計方法

13-1 無母數統計方法概述 13-6 Kruskal-Wallis檢定法

13-2 符號檢定法

13-7 Friedman檢定法

/13-3 Wilcoxon符號等級檢定法 13-8 連檢定法

13-4 Wilcoxon等級和檢定法 13-9 Spearman等級相關檢定法

13-5 Mann-Whitney檢定法

書號:512282

● 無母數統計方法的意義:

無母數統計方法 (nonparametric satatistics) 為不以母體中任何母數為估計或檢定對象的統計方法。

因其不必受到母體為常態分配型態的限制,因此又可稱為不限母體分配型態的統計方法 (distribution-free statistics);又由於其方法不以母數為推論對象,而轉向利用統計資料的大小或先後順序排列的方式,來進行統計分析,因此又常稱為順序統計的推論方法 (order statistics)。

● 無母數統計方法的特質:

- 1. 不必受到母體分配型態的限制,尤其是常態分配型態。
- 2. 其所推論的對象不為母體中的任何母數,如:平均數。
- 3. 若母體分配型態已知,則有母數統計方法的推論效率 會高於無母數統計方法。

由於無母數統計方法,常忽略一些資料(通常只利用 資料的順序大小、排序進行推論工作,而不管資料 本身的數值),而造成推論效率降低。

4. 其推論方法常利用排序資料 (順序尺度) 來進行統計分析, 以中位數表示其中心位置, 位差 (全距、四分位差等) 表示離散的程度。

● 無母數統計方法與統計資料測量尺度之關係:

尺度	比較項目	例 子	統計方法
名義	本身	男 - 女	無母數
順序	次序	偏好順序	無母數
區間	區間比較	溫度差異	有母數
比 率	絕對數值	銷售量	有母數

● 常用的無母數統計方法:

▲ 單一樣本情況:

- (1) 符號檢定法。
- (2) Wilcoxon 符號等級 (sign rank) 檢定法。
- (3) K-S 適合度檢定法。
- (4) 連檢定法。

▲ 兩獨立樣本情況:

- (1) Wilcoxon 等級和 (rank sum) 檢定法。
- (2) Mann Whiney 檢定法。
- (3) K-S 檢定法。

- 常用的無母數統計方法:
 - ▲ 兩相依樣本情況:
 - (1) 符號檢定法。
 - (2) Wilcoxon 符號等級檢定法。
 - **♣** k 組樣本情況:
 - (1) k 組獨立樣本: Kruskal Wallis 檢定法。
 - (2) k 組相依本: Friedman 檢定法。

- 常用的無母數統計方法:
 - **♣ Spearman 等級相關檢定法:**

分析目的	有母數統計方法	無母數統計方法
單一樣本	【 檢定	【符號檢定 Wilcoxon 符號等級檢定】—中位數 K-S 檢定
兩獨立樣本差異	雨獨立樣本 t 檢定	Wilcoxon 等級和檢定 Mann-Whitney 檢定 K-S 檢定法
兩相依樣本差異	雨相依樣本 t 檢定	【符號檢定 Wilcoxon 符號等級檢定
k組獨立樣本差異	一因子變異數分析	Kruskal-Wallis 檢定法
k組相依樣本差異	隨機化區集設計 (二因子重複實驗設計)	Friedman 檢定法

註:在兩獨立樣本情況,由於 Wilcoxon 等級和檢定與 Mann-Whitney 檢定 原理相同,常以 Mann-Wilcoxon 檢定法代之。

13-2 符號檢定法

例題 13-1

設有一樣本資料為 24, 22, 19, 31, 23, 42, 17, 15, 18, 28, 23, 15, 16, 18, 14, 25, 8, 茲檢定母體資料中位數是否為 25?(設顯著水準為 0.05)

解:(a) 假設:
$$\begin{cases} H_0: \eta = 25 \\ H_1: \eta \neq 25 \end{cases}$$

- (b) 顯著水準: α = 0.05
- (c) 計算: 其正負符號爲 ---+-+---00-
 - ① 以小樣本情況檢定:採二項分配,其機率值 P

$$P = \sum_{S=0}^{S} C_S^n \left(\frac{1}{2}\right)^n = \sum_{S=0}^{3} C_3^{16} \left(\frac{1}{2}\right)^{16} = 0.011 \text{ (查表)}$$

(式中正號較小 S=3, n=16 , 其中有兩個 D=0 , 不予考慮。)

② 以大樣本情況檢定:採Z分配 (:: $nP \ge 5$ 且 $n(1-P) \ge 5$)

$$Z = \frac{\left(S \mp \frac{1}{2}\right) - \mu_S}{\sigma_S} = \frac{\left(3 - \frac{1}{2}\right) - 8}{2} = -2.75$$

$$\begin{cases} \mu_S = nP = 16 \times \frac{1}{2} = 8\\ \sigma_S = \sqrt{nPq} = \sqrt{16 \times \left(\frac{1}{2}\right)\left(\frac{1}{2}\right)} = 2 \end{cases}$$

- (d) 判斷:
 - ① 小樣本情況: $P = 0.011 < \frac{\alpha}{2} = 0.025$

(閉 $2P < \alpha$, 0.022 < 0.05)

- ② 大樣本情況: $Z = -2.75 < -Z_{0.975} = -1.96$
 - \therefore 兩種結論相同,均放棄 H_0 ,即中位數不爲 25。

例題 13-2

泰山公司想測定其產品品牌與競爭品牌何者優劣,乃抽選 20 名消費者試用一星期,然後請其評分 (1~5分,1 最差,5 最好), 評估結果如下表所示,設 α=0.05,試檢定兩品牌是否有顯著差 異?

學生	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
本公司品牌	4	5	4	4	4	3	5	2	1	4	4	5	2	4	2	4	1	4	4	4
競爭品牌																				

解:(a) 假設: $\begin{cases} H_0: \text{兩品牌無顯著差異} (\eta_1 = \eta_2) \\ H_1: \text{兩品牌有顯著差異} (\eta_1 \neq \eta_2) \end{cases}$

(b) 顯著水準: $\alpha = 0.05$

(c) 計算:其正負符號爲 (D = 本公司品牌 x - 競爭品牌 y)

$$+++++0+0-+++-++0$$

① 以小樣本情況檢定:採二項分配

機率値
$$P = \sum_{S=0}^{3} C_3^{17} \left(\frac{1}{2}\right)^{17} = 0.006$$

(式中負號較小 S=3, n=17, 其中有 3 個 D=0, 不予考慮)

② 以大樣本情況檢定:採Z檢定 $(::nP \ge 5$ 且 $n(1-P) \ge 5)$

$$Z = \frac{\left(3 - \frac{1}{2}\right) - 8.5}{2.06} = -2.91$$

$$\begin{cases} \mu_S = 17 \times \frac{1}{2} = 8.5 \\ \sigma_S = \sqrt{17 \times \left(\frac{1}{2}\right) \left(\frac{1}{2}\right)} = 2.06 \end{cases}$$

(d) 判斷:

- ① 小樣本情況: $P = 0.006 < \frac{\alpha}{2} = 0.025$ (即 0.012 < 0.05)
- ② 大樣本情況: $Z = -2.91 < -Z_{0.975} = -1.96$
 - :兩種結論相同,均放棄 H_0 ,即兩品種有顯著差異。

13-3 Wilcoxon 符號等級檢定法

例題 13-3

味全公司以7點量表 (1~7·1表示非常不喜歡,7表示非常喜歡)來調查對甲產品的偏好程度,今隨機抽取 15人,其回答之點數為:

様本	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
點數	6	7	4	4	3	7	4	4	5	3	2	2	3	3	3

設 $\alpha = 0.05$,試以 Wilcoxon 符號等級檢定顧客對產品是否有偏好差 異?

解:(a) 假設:
$$\begin{cases} H_0: \eta = 4 \text{ (點數 4 居中,表示沒偏好差異)} \\ H_1: \eta \neq 4 \end{cases}$$

(b) 顯著水準: $\alpha = 0.05$

(c) 計算:

樣 本	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
點數 X_i	6	7	4	4	3	7	4	4	5	3	2	2	3	3	3
差數 $D = X_i - 4$	2	3	0	0	-1	3	0	0	1	-1	-2	-2	-1	-1	-1
D	2	3	刪	刪	1	3	刪	刪	1	1	2	2	1	1	1
等 級	8	10.5	-	-	3.5	10.5	-	_	3.5	3.5	8	8	3.5	3.5	3.5

$$\bigcirc$$
 $(9+8+7)/3=8$

③
$$(6+5+4+3+2+1)/6 = 3.5$$

 $W(+) = 8+10.5+10.5+3.5 = 32.5$
 $W(-) = 3.5+3.5+8+8+3.5+3.5+3.5 = 33.5$

(d) 判斷::W = 32.5 (取小者) > 臨界値 $11 (n = 11, \alpha = 0.05)$,差異不顯著,接受 H_0 ,即顧客對甲產品之偏好無顯著差異。 *若假設差數 D 之母體爲對稱分配,則 E(T) = 0 ,

$$\sigma(T) = \sqrt{\frac{11 \times (11+1)(2 \times 11+1)}{6}} = 22.49$$

$$T = W(+) - W(-) = 32.5 - 33.5 = -1$$

$$Z = \frac{-1 - 0}{22.49} = -0.0445 > -Z_{0.975} = -1.96$$

落在接受域,所得之結論相同。

試以 Wilcoxon 符號等級檢定例題 13-2 兩相依樣本情況之例。

解: (a) 假設: $\begin{cases} H_0: 兩品牌無顯著差異 (\eta_1 = \eta_2) \\ H_1: 兩品牌有顯著差異 (\eta_1 \neq \eta_2) \end{cases}$

- (b) 顯著水準: α = 0.05
- (c) 計算:

學生	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
本公司品牌 (X_i)	4	5	4	4	4	3	5	2	1	4	4	5	2	4	2	4	1	4	4	4
競爭品牌 (Yi)	3	3	3	2	2	3	4	2	2	2	1	3	4	3	1	2	5	1	3	4
差數 $D = X_i - Y_i$	1	2	1	2	2	0	1	0	-1	2	3	2	-2	1	1	2	-4	3	1	0
D	1	2	1	2	2	刪	1	刪	1	2	3	2	2	1	1	2	4	3	1	刪
等 級	4	11	4	11	11	_	4	_	4	11	15.5	11	11	4	4	11	17	15.5	4	

$$W(+) = 121$$
 $W(-) = 32$

(d) 判斷::W=32 (取小者) < 臨界值 35 (n=17, $\alpha=0.05$),差異顯著,: 放棄 H_0 ,即兩品牌有顯著差異。本結論與符號檢定法之結論相同。

例題 13-5

試以 Wilcoxon 符號等級檢定下表之結果 (設 $\alpha = 0.05$, X 與 Y 成對抽取)

樣 本	X銷售量	Y銷售量	差 數	差數的等級	總和較小的等級 (+)
1	40	65	-25	-23	
2	75	60	+15	+15	15
3	24	36	-12	-12	
4	21	15	+6	+6	6
5	8	12	-4	-4	
6	10	15	-5	-5	
7	15	12	+3	+3	3
8	30	48	-18	-18	
9	22	21	+1	+1	1
10	16	16	0	0	
11	15	8	+7	+7	7
12	56	85	-29	-25	
13	12	20	-8	-8	
14	4	18	-14	-14	
15	32	45	-13	-13	
16	20	29	-9	-9	

檬 本	X銷售量	Y銷售量	差 數	差數的等級	總和較小的等級 (+)
17	49	60	-11	-11	
18	32	22	+10	+10	10
19	15	32	-17	-17	
20	80	120	-40	-27	
21	30	30	0	0	
22	16	32	-15	-16	
23	41	20	+21	+21	21
24	35	11	+24	+22	22
25	24	50	-26	-24	
26	18	49	-31	-26	
27	16	58	-42	-28	(
28	10	8	+2	+2	2
29	37	18	+19	+19	19
30	50	70	-20	-20	
					$\overline{W} = 106$

解:(a) 假設: $\begin{cases} H_0 : 兩產品銷售量無顯著差異 \\ H_1 : 兩產品銷售量有顯著差異 \end{cases}$

- (b) 顯著水準: $\alpha = 0.05$
- (c) 計算:

$$E(W) = \frac{n(n+1)}{4} = \frac{(28)(29)}{4} = 203$$

$$\sigma(W) = \sqrt{\frac{n(n+1)(2n+1)}{24}} = \sqrt{\frac{(28)(28+1)(2\times28+1)}{24}} = 43.9$$

$$Z = \frac{W - E(W)}{\sigma(W)} = \frac{106 - 203}{43.9} = -2.21$$

(d) 判斷: $:-2.21 < -Z_{0.975} = -1.96$,落在放棄域,差異顯著,放棄 H_0 ,即兩產品銷售量有顯著差異。

13-4 Wilcoxon 等級和檢定法

例題 13-6

今隨機各抽取甲乙班學生若干人,觀察其統計學成績,成績如下表所示,以 Wilcoxon 等級和檢定法,檢定甲班統計學成績是否比乙班好?(設 $\alpha=0.05$)

甲班	83	65	74	87	76		
乙班	71	84	60	78	89	75	63

(b) 顯著水準: $\alpha = 0.05$

(c) 計算:
$$n_1 = 5$$
, $\overline{X}_1 = 77$, $n_2 = 7$, $\overline{X}_2 = 74.29$

$$\therefore n_1 < n_2, \overline{X}_1 > \overline{X}_2$$

:: 樣本觀察值按下降方式排列,其等級如下表所示:

甲班	4	10	8	2	6		
乙班	9	3	12	5	1	7	11

$$W_1 = 4 + 10 + 8 + 2 + 6 = 30$$

$$U_0 = W_1 - \frac{n_1(n_1 + 1)}{2} = 30 - \frac{5(5 + 1)}{2} = 15$$

(d) 判斷:
$$: P(U \le 15 | H_0 \, \underline{a}) = 0.378 > \frac{\alpha}{2} = 0.025$$
,差異不顯著,接受

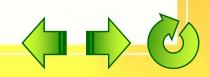
 H_0 ,即甲班統計學成績並沒有高於乙班。

例題 13-7

設雨產品的銷售量如下:(單位百萬元)

甲	55	62	76	71	83	89	82	76	95	67	40	69
Z	73	50	78	59	72	86	54	47	92	70	85	

設 $\alpha = 0.05$, 試以 Wilcoxon 等級和檢定法檢定兩產品銷售量是否有 顯著差異?



解: (a) 假設: $\begin{cases} H_0: 兩產品銷售量無顯著差異 \\ H_1: 兩產品銷售量有顯著差異 \end{cases}$

(b) 顯著水準: $\alpha = 0.05$

(c) 計算:最小樣本數爲乙產品 $n_1 = 11$, $\overline{X}_1 = \frac{73 + 50 + \dots + 85}{11} = 69.64$,較大樣本數爲甲產品, $n_2 = 12$, $\overline{X}_2 = 72.08$, $:: n_1 < n_2$, $\overline{X}_1 < \overline{X}_2$,故樣本觀察值等級數按上升排列,最小值給 1,如下表所示:

甲	5	7	14.5	11	18	21	17	14.5	23	8	1	9
Z	13	3	16	6	12	20	4	2	22	10	19	

 W_1 (爲 n_1 個樣本之等級和,即乙產品) = $13+3+\cdots+10+19=127$,代入統計量 $U_0=W_1-\frac{n_1(n_1+1)}{2}=127-\frac{11(11+1)}{2}=61$ 。

(d) 判斷: $:U_0 >$ 查表值 U = 33 ,: 差異不顯著,接受 H_0 ,即兩產品 銷售無顯著差異。

13-5 Mann-Whitney 檢定法

例題 13-8

試以 13-4 [例题 13-6] 以 Mann-Whitney 檢定法,檢定甲班統 計學是否比乙班好?

- (b) 顯著水準: $\alpha = 0.05$
- (c) 計算:

甲	4	10	8	2	6		
Z	9	3	12	5	1	7	11

$$n_1 = 5, W_1 = 4 + 10 + \dots + 6 = 30$$

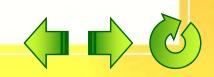
$$n_2 = 7, W_2 = 9 + 3 + \dots + 7 + 11 = 48$$

$$U_1 = n_1 n_2 + \frac{n_1 (n_1 + 1)}{2} - W_1 = (5)(7) + \frac{5(5 + 1)}{2} - 30 = 20$$

$$U_2 = n_1 n_2 + \frac{n_2 (n_2 + 1)}{2} - W_2 = (5)(7) + \frac{7(7 + 1)}{2} - 48 = 15$$

$$U_0 = \min(U_1, U_2) = \min(20, 15) = 15$$

(d) 判斷:: $P(U \le 15 | H_0 \text{ 真}) = 0.378 > 0.05$,差異不顯著,接受 H_0 ,即甲班統計學成績並沒有高於乙班,結論與 Wilcoxon 等級和檢定相同。



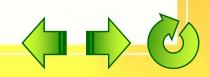
例題 13-9

試以 13-4 [例題 13-7] 以 Mann-Whitney 檢定法檢定之。

(b) 顯著水準: $\alpha = 0.05$

(c) 計算:

甲	5	7	14.5	11	18	21	17	14.5	23	8	1	9
Z	13	3	16	6	12	20	4	2	22	10	19	



$$W = 13 + 3 + \dots + 10 + 19 = 127, n_1 = 11, n_2 = 12$$

$$E(W) = \frac{n_1(n_1 + n_2 + 1)}{2} = \frac{(11)(11 + 12 + 1)}{2} = 132$$

$$\sigma(W) = \sqrt{\frac{n_1n_2(n_1 + n_2 + 1)}{12}} = \sqrt{\frac{(11)(12)(11 + 12 + 1)}{12}} = 16.25$$

$$Z = \frac{W - E(W)}{\sigma(W)} = \frac{127 - 132}{16.25} = -0.308$$

(c) 判斷: $::-0.308>-Z_{0.975}=-1.96$,差異不顯著,接受 H_0 ,即兩者銷售量無顯著差異,其結論與 Wilcoxon 等級和同。

13-6 Kruskal-Wallis 檢定法

例題 13-

從甲、乙、丙三班各抽出 5 人,其國文成績如下表,試以 Kruskal-Wallis 檢定法,檢定三班國文成績是否有顯著差異? (α=0.05)

甲班	乙班	丙班
51	57	65
60	67	74
58	69	77
61	63	80
68	71	79

(b) 顯著水準: $\alpha = 0.05$

(c) 計算:15 個樣本之等級如下:

甲班	乙班	丙班
1	2	7
4	8	12
3	10	13
5	6	15
9	11	14
22	37	61

$$R_{\text{pp}} = 22, R_{\text{Z}} = 37, R_{\text{pp}} = 61, k = 3, n_{1} = n_{2} = n_{3} = 5, n = 15$$

$$H = \frac{12}{n(n+1)} \sum_{i=1}^{k} \frac{R_{i}^{2}}{n_{i}} - 3(n+1)$$

$$= \frac{12}{15(15+1)} \left[\frac{(22)^{2}}{5} + \frac{(37)^{2}}{5} + \frac{(61)^{2}}{5} \right] - 3(15+1) = 7.74$$

(d) 判斷:由於 k=3, $n_1=n_2=n_3$,查 H 機率表,當 H=7.74 介於 7.98 ~5.7800 之間,即得機率值 P 在 0.01 ~0.049 之間,小於 $\alpha=0.05$,故差異顯著,放棄 H_0 ,即三班的國文成績有顯著差異。

例題13-11

從四個地區各隨機抽出四家便利超商,各每日營業額如下 (單位:千元):

甲地區	乙地區	丙地區	丁地區
14	16	16	17
10	18	15	20
11	14	14	19
13	15	12	21

試以 Kruskal-Wallis 檢定法,檢定四個地區的便利超商每日營業額是否有顯著性差異?



解:(a) 假設:
$$\begin{cases} H_0: \mu_{\parallel} = \mu_{Z} = \mu_{|Y|} = \mu_{|Y|} \\ H_1: 不全等 \end{cases}$$

(b) 顯著水準: $\alpha = 0.05$

(c) 計算: 其等級數如下

甲	7	丙	Ţ
6	10.5	10.5	12
1	13	8.5	15
2	6	6	14
4	8.5	3	16
13	38	28	57

$$R_{iji} = 13, R_{ij} = 38, R_{ji} = 28, R_{ji} = 57, k = 4,$$

$$n_1 = n_2 = n_3 = n_4 = 4, n = 16 \cdot \text{代入統計量}$$

$$H = \frac{12}{(16)(17)} \left[\frac{(13)^2}{4} + \frac{(38)^2}{4} + \frac{(28)^2}{4} + \frac{(57)^2}{4} \right] - 3(17) = 11.27$$

(d) 判斷: : $H = 11.27 > \chi^2_{0.95(3)} = 7.81$, 落在放棄域 , .. 放棄 H_0 , 即四

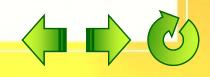
地區的便利超商的每日營業額有顯著的差景。

13-7 Friedman 檢定法

例題 13-

三位觀眾給國內四家電視台新聞節目的評分如下表所示,設 $\alpha=0.05$,試以 Friedman 檢定法檢定四家電視台的新聞節目評等是 否一致?

電視台	台祝	中視	華視	TVBS
甲	83	74	60	80
乙	84	75	72	88
内	79	72	74	76



解:(a) 假設: $H_0:$ 四家電視台評等一致 $H_1:$ 四家電視台評等不一致

(b) 顯著水準: α = 0.05

(c) 計算: k=4, n=3 (四行,三列)

電視台 觀 眾	台親	中觀	華視	TVBS
甲	4	2	1	3
Z	3	2	1	4
丙	4	1	2	3
R_{i}	11	5	4	10

$$\chi_r^2 = \frac{12}{nk(k+1)} \sum_{i=1}^k R_i^2 - 3n(k+1)$$

$$= \frac{12}{(3)(4)(4+1)} (11^2 + 5^2 + 4^2 + 10^2) - (3)(3)(4+1)$$

$$= 7.4$$

(d) 判斷:查表得 $P(\chi_r^2 > 7A) = 0.033 = P < \alpha = 0.05$, 放棄 H_0 , 表示觀

以對四家電視台評等不一致。

例題 13-

隨機抽取 9 位顧客,調查其對烏龍茶飲料的滿意程度,如下表 所示 (1 表示非常不滿意,5 表示非常滿意):

品牌 顧客	味 全	統一	開喜	愛之味	泰山
1	2	1	4	3	5
2	2	3	4	1.	5
3	4	1	3	2	5
4	1	2	5	3	4
5	1	2	3	5	4
6	1	3	4	2	5
7	1	3	4	5	2
8	1	2	4	3	5
9	4	1	2	2 3	

試檢定五種品牌受滿意的程度是否一致? (α=0.05)

(b) 顯著水準: $\alpha = 0.05$

(c) 計算:
$$R_1 = 17$$
, $R_2 = 18$, $R_3 = 33$, $R_4 = 27$, $R_5 = 40$, $k = 5$, $n = 9$

$$\chi_r^2 = \frac{12}{(9)(5)(5+1)} (17^2 + 18^2 + 33^2 + 27^2 + 40^2) - (3)(9)(5+1)$$
= 17.16

(d) 判斷: $::17.16 > \chi^2_{(0.95,4)} = 9.49$,差異顯著,故放棄 H_0 ,即顧客對五種品牌的滿意程度不一致。

13-8 連檢定法

例題

13-

甲生針對十五題是非題的答案是;

OxOOOxOxOxOOx

請問:(1) 連數 r 為多少?

(2) 答案是否出現隨機性? (α = 0.05)

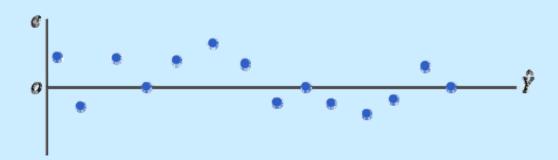
 $\underbrace{\mathbf{P}:}_{1} \text{ (a)} \quad \frac{\bigcirc \times}{1} \frac{\bigcirc \bigcirc \bigcirc \times}{2} \frac{\times}{3} \frac{\bigcirc \times}{4} \frac{\bigcirc \times}{5} \frac{\times}{6} \frac{\bigcirc \times}{7} \frac{\times \times}{8} \frac{\bigcirc \bigcirc \times}{9} \frac{\times}{10}$

共有 r=10 , \bigcirc 有 $n_1=8$, x有 $n_2=7$ 個

- (b) ① 假設: $\begin{cases} H_0 : 答案隨機性出現 \\ H_1 : 答案非隨機性出現 \end{cases}$
 - ② 顯著水準 α = 0.05
 - ③ 計算:r=10, $n_1=8$, $n_2=7$, 查連檢定的 r_L 與 r_u 得 $r_L=4$, $r_U=13$ 。

例題 13-

茲以最小平方法求算迴歸線 $\hat{Y}_i=a+bX_i$, 其中 \hat{Y}_i 與 e_i 之圖形如下,試以 $\alpha=0.05$ 檢定 e_i 是否具備隨機性?



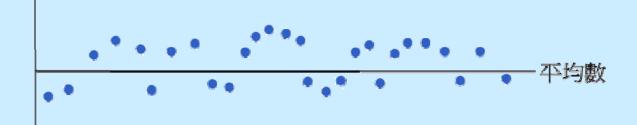
- (b) 顯著水準: α = 0.05
- (c) 計算: $\frac{+-+0+++-0---+0}{3}$

r=5, n_1 (+ 號)=6, n_2 (- 號)=5, 查表得 $r_L=3$, $r_U=10$

(d) 判斷: $: 3 \le r = 5 \le 10$, 落在接受域 , 接受 H_0 , 即 e_i 具備隨機性。

例題 13-

台泥廠定期檢驗產品,在平均線以上達標準,以下列為瑕疵品,如下圖所示,設 α=0.05,試檢定瑕疵品是否隨機出現?



解: (a) 假設: $H_0:$ 瑕疵品爲隨機發生 $H_1:$ 瑕疵品不爲隨機發生

- (b) 顯著水準: $\alpha = 0.05$
- (c) 計算: 設×表瑕疵品,○表非瑕疵品。

$$\bigcirc$$
xxx \bigcirc x \bigcirc 0 \bigcirc 0 \bigcirc x \bigcirc x

 $n_1 = 11$ (代表瑕疵品的個數), $n_2 = 17$ (代表非瑕疵品的個數), $n_2 = 28 = n_1 + n_2$,r = 13 · $\because n_1$ 與 n_2 均大於 10,r 分配近似常態分配。

$$E(r) = \frac{2n_1n_2}{n_1 + n_2} + 1 = \frac{2(11)(17)}{11 + 17} + 1 = 14.36$$

$$\sigma(r) = \sqrt{\frac{2n_1n_2(2n_1n_2 - n_1 - n_2)}{(n_1 + n_2)^2(n_1 + n_2 - 1)}} = \sqrt{\frac{2(11)(17)(2 \times 11 \times 17 - 11 - 17)}{(11 + 17)^2(11 + 17 - 1)}}$$

$$= 2.47$$

$$Z = \frac{r - E(r)}{\sigma(r)} = \frac{13 - 14.36}{2.47} = -0.55$$

(d) 判斷::: -0.55 > - $Z_{0.975}$ = -1.96, 落在接受域,接受 H_0 ,即瑕疵品

13-9 Spearman等級相關檢定法

例題 13-

今自甲班及乙班分別抽出 10 名學生,其數學與統計學之成績如下:

學 生	1	2	3	4	5	6	7	8	9	10
數學	76	69	81	45	22	65	72	38	54	48
統計學	73	79	75	37	15	46	66	58	68	42

試求:(1) 等級相關係數。

(2) 雨班學生數學與統計學成績等級間是否有顯著相關?

解: (a) 等級相關係數:

先就兩科日個別成績評定其等級,最低分數給 1(亦可最高分給 1)。

學生	1	2	3	4	5	6	7	8	9	10
數學 (X_r)	9	7	10	3	1	6	8	2	5	4
統計學 (Y,)	8	10	9	2	1	4	6	5	7	3
$d = X_r - Y_r$	1	-3	1	1	0	2	2	-3	-2	1

$$\Sigma d^2 = 1^2 + (-3)^2 + \dots + (-2)^2 + 1^2 = 34, n = 10$$

$$r_s = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)} = 1 - \frac{(6)(34)}{10(10^2 - 1)} = 1 - 0.206 = 0.794$$

(b) ① 假設:
$$\begin{cases} H_0: \rho_s = 0 \\ H_1: \rho_s \neq 0 \end{cases}$$

② 顯著水準: α = 0.05

③ 計算:

(i) 散採 Z 分配

$$Z = r_s \sqrt{n-1} = 0.794 \sqrt{10-1} = 2.382$$

(ii) 設採 t 分配

$$t = \frac{r_s \sqrt{n-2}}{\sqrt{1-r_s^2}} = \frac{0.794\sqrt{10-2}}{\sqrt{1-(0.794)^2}} = 3.694$$

- ④ 判斷:
 - (i) $:: 2.382 > Z_{0.975} = 1.96$,放棄 H_0 。
 - (ii) $:: 3.694 > t_{0.975(8)} = 2.306$,放棄 H_0 。

即兩班學生數學與統計學成績等級間有顯著相關。

